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Abstract

A new SEA method is developed in this paper to analyze the vibration and noise radiation from the
complicated coupled systems. Firstly, some elements influence the energy transmission between the two
coupled mechanical structures are separated and corresponding parameters are introduced to investigate
those influences separately. Linking style coefficient is introduced to denote the rule of vibration energy
transmission when structures are linked by one point, some points or a line. Non-conservative coupling
coefficient is introduced to describe the influence of isolation or damping when structures are isolated or
damped. Indirect coupling coefficient is introduced to research the property of vibration energy
transmission when two structures are indirectly linked by other structure. Secondly, on the basis above,
the gradation analysis is put forward to simplify the vibration analysis of complicated coupled system.
Thirdly, vibration and noise radiation from an underwater vehicle is analyzed by the developed SEA.
Levels of vibration and sound power induced by the underwater vehicle are predicted. The analysis results
agree well with the experiment results. Finally, based on the analysis, the way to control the noise from the
vehicle is pointed out.
r 2003 Elsevier Ltd. All rights reserved.

1. Definitions of SEA parameters

Since non-conservatively coupling is very common in engineering, more and more studies of
non-conservatively coupled system were carried out.
Some researchers [1] believe that non-conservatively coupling increases the internal losses of

both the two coupled structures (Fig. 1). By apportioning the non-conservatively coupled loss to
internal losses of the two coupled structures, one can express the energy balance equation by
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means of SEA

P1 ¼ oðZ01 þ Z12ÞE1 � oZ21E2; ð1Þ

where Z01 ¼ Z1 þ DZ1 is the equivalent internal loss factor, the increment DZ1 suggests the effect of
the non-conservative coupling. According to this change, the non-conservative coupling increases
the equivalent internal loss factor. But in the later experiments, negative loss factor is obtained [2],
which means equivalent internal loss factor may be less than zero in some times. The negative loss
factor seems unreasonable, and was usually regarded as measurement errors. In fact, structures’
coupling makes the transmission of vibration more complicated, and DZ1 may not be an
increment.
Some other researchers [3] suggest to introduce the coupling damping loss factor to express the

characteristic of the non-conservative coupling. Thus the energy balance equation is rewritten as

P1 ¼ oðZ1 þ Z12 þ B12ÞE1 � oZ21E2; ð2Þ

where internal loss factor still means the internal loss factor of structure, coupling loss factor still
means the coupling loss factor of conservatively coupled system, and the coupling damping loss
factor B12 means the additional loss from the coupling.
Consequently, the authors proposed a new method by introducing the equivalent internal loss

factor which is not gained by simply adding a positive increment to structure’s internal loss factor.
Here, the energy balance equation still works:

P1 ¼ oðZ01 þ Z012ÞE1 � oZ021E2; ð3Þ

where Z01 is the equivalent internal loss factor; Z
0
12 and Z

0
21 are the non-conservative coupling loss

factors. The coupling loss factor of the non-conservatively coupled system indicates the
transmission characteristic of power flow between the non-conservatively coupled structures. The
equivalent internal loss factor adds a modified sect to the structures’ internal loss factor and it
reveals the difference of the energy transmission between two ends of the coupling. The modified
sect can be positive or negative even make the equivalent internal loss factor negative.

2. Equivalent internal loss factor of non-conservatively coupled oscillators

Fig. 2 shows a two non-conservatively coupled oscillators system. Analysis model is set up as in
Fig. 3. The energy balance equations of oscillators 1 and 2 can be expressed as

P1 ¼ o1ðZ1 þ ZI12ÞE1 � o2ZI21E2;

P2 ¼ o2ðZ2 þ ZII21ÞE2 � o1ZII12E1; ð4Þ
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where ZIij means the coupling loss factor occurred in boundary I from substructure i to
substructure j; ZIIij has a meaning similar to that which occurs on boundary II, and i; j ¼ 1; 2:
The effective SEA model is put forward in this paper, shown in Fig. 4. Equations can be derived

as

P1 ¼ o1ðZ01 þ Z012ÞE1 � o2Z021E2;

P2 ¼ o2ðZ02 þ Z021ÞE2 � o1Z012E1: ð5Þ

From Eqs. (4) and (5), one can obtain the equivalent internal loss factor and the non-
conservative coupling loss factor

Z012 ¼ ZII12; Z01 ¼ Z1 þ ðZI12 � ZII12Þ;

Z021 ¼ ZI21; Z02 ¼ Z2 þ ðZII21 � ZI21Þ: ð6Þ
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Fig. 2. Two non-conservatively coupled oscillators system.
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Fig. 4. The effective SEA model of non-conservatively coupled system.
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The equivalent internal loss factor of the non-conservative coupled system is not equal to the
structures’ internal loss factor. Coupling characteristic has important influence to equivalent
internal loss factor. Only when the coupling damping is small enough, the equivalent internal loss
factor is close to the internal loss factor of the substructure.
In order to make numerical analysis easier, a model of two non-conservatively coupled

oscillators system is set-up, shown in Fig. 4. Assuming that external exciting frequency is f and
oscillator’s parameters are decided, i.e., for oscillator 1, mass m1 ¼ 1:5 kg; stiffness K1 ¼
400 N=m; damping coefficient c1 ¼ 0:5 Ns=m; for oscillator 2, mass m2 ¼ 2:0 kg; stiffness K2 ¼
200 N=m; damping coefficient c2 ¼ 1:0 Ns=m:
Fig. 5 displays the curve of the equivalent internal loss factor Z01 influenced by c3: There is an

abrupt change of equivalent internal loss factor at resonance frequency of oscillator 2. A valley of
Z01 occurs when exciting frequency f is a little lower than the nature frequency of oscillator 2, f2;
and a peak occurs when f is a little higher than f2: Abrupt change is more obvious when the
coupling damping is larger. But beyond the resonance frequency range, equivalent internal loss
factor is higher when coupled damping is larger, as one can foresee.
The influence curve of the coupling stiffness k3 to the equivalent internal loss factor Z01 can be

seen in Fig. 6. It reveals that when the coupling stiffness becomes larger, fall of the
peak to the valley becomes greater, which means coupling stiffness has catalysis equivalent to
internal loss factor. Furthermore, analyses [4] tell that the peak of Z01 corresponds to the valley of
Z02; vice versa.
Thus some important conclusion can be obtained, i.e., the equivalent internal loss

factor of non-conservatively coupled system reveals not only the internal loss factor
of the structure, but also the difference of the power flow between two ends of non-conservative
coupling. For conservatively coupled system, the difference of power flow between
two ends is zero, and the equivalent internal loss factor equal to the internal loss factor of the
structure.
This conclusion is useful to SEA of non-conservatively coupled system. However, practical

system consists of continuous multi-modal structures with complex vibration response
characteristic different from oscillator systems. Thus the conclusion derived from the study of
oscillator’s power flow cannot be used directly in SEA of practical system. The characteristic of
power flow of structural coupled system is studied as follows.
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Fig. 5. The influence of coupling damping on effective loss factor.
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3. Point-like and line-like joint systems

For a structure with mass m and loss factor Z; suppose that the real part of the average driving
point mobility is G and the average transfer point mobility is y: One gets [5]

G ¼
n

4M
; jyj2 ¼

G

oZM
; ð7Þ

where n is the modal density.
In a conservatively coupled system, two structures are connected by a single point. In the case

when there is an external force acting at structure 1, average transfer mobility from structure 1 to
structure 2 by using four ports network approach is given by

y12 ¼
y1y2

Y1 þ Y2
; ð8Þ

where y12 is the transfer mobility between two structures; Y1 and Y2 are driving mobilities of
structures 1 and 2, respectively; y1 and y2 are average transfer mobilities of structures 1 and 2,
respectively. If only structure 1 is excited, the ratio of average vibration energy of structure 2 to
structure 1 can be rewritten as

E
ð1Þ
21 ¼

G2

oZ2M1jY1 þ Y2j2
: ð9Þ

Similarly, the ratio of the average vibration energy of structure 1 to structure 2, E
ð2Þ
12 can be

acquired if only structure 2 is excited. From the energy balance equations of SEA, coupling loss
factor may be expressed as

Z12 ¼
Z2

E
ð1Þ
21 � Z1E

ð2Þ
12

;

Z21 ¼
Z1

E
ð2Þ
12 � Z2E

ð1Þ
21

: ð10Þ

If there is a conservatively coupled system jointed by two continuous structures via N separated
points, making use of four ports network approach, the transfer mobility between two structures

ARTICLE IN PRESS

K3 = 20 N/m
K3 = 50 N/m

K3 = 100 N/m
K3 = 120 N/m

1

0.8

0.6

0.4

0.2

−0.2

−0.4

−0.6

−0.8

−1

0� 1
′

0.1 1 10
� / �1

Fig. 6. The influence of coupling stiffness on effective loss factor.
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is given as

y012 ¼
y12

p
: ð11Þ

Defining p as the linking style coefficient,

p ¼
1

N
þ

N � 1
N

�
y1 þ y2

Y1 þ Y2
: ð12Þ

Supposing that the transfer mobility is far less than the driving mobility [5], one gets

E
ð1Þ0

21 ¼
1

p

����
����
2

�Eð1Þ
21 : ð13Þ

For a line joint system, the number of connecting points N can be expressed as [5]

N ¼
p
4

L

l
; ð14Þ

where L means the length of connecting line and l means the wavelength.
For an experimental system shown in Fig. 7, the measured results show good coincidence with

the theoretical prediction. The experimental system is made of two steel plates linked by bolts.
Fig. 8 gives out the predictions and the experimental measured results of vibration energy ratio.
The curves show that the structure’s measured vibration energy ratio fluctuates around the
theoretical predicted values. On this account, the analysis method and formula studied above are
reliable and applicable in vibration analysis of multi-point coupled system.

4. Non-conservatively coupled system

Non-conservatively coupled system is very common in engineering systems. In order to make
SEA applicable widely in practice, study of the vibration analysis and prediction of non-
conservatively coupled systems is necessary [6].
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Fig. 9 gives a SEA analysis model of structural non-conservatively coupled systems. Energy
balance equation can be expressed as Eqs. (5). Assuming that only structure 1 is excited, Eqs. (5)
can be rewritten as

Z1s ¼ Z01 þ Z012 � Z021E
ð1Þ
21 ;

0 ¼ Z02 þ Z021 � Z012=E
ð1Þ
21 ; ð15Þ

where Z1s means the total loss factor of substructure 1. Similar equations can be got if only
structure 2 is excited. Combining these equations, one can acquire equivalent internal loss factor
and coupling loss factor as follows:

Z01 ¼
Z1s þ Z2sE

ð1Þ
21

1� E
ð1Þ
21 E

ð2Þ
12

; Z02 ¼
Z2s þ Z1sE

ð2Þ
12

1� E
ð1Þ
21 E

ð2Þ
12

;

Z012 ¼
E

ð1Þ
21

1� E
ð1Þ
21 E

ð2Þ
12

Z2s; Z021 ¼
E

ð2Þ
12

1� E
ð1Þ
21 E

ð2Þ
12

Z1s: ð16Þ

From Eqs. (15) and (16), one finds that to calculate the equivalent internal loss factor and
coupling loss factor of non-conservatively coupled system, it is necessary to figure out the
structure’s vibration energy ratio and total loss factors with single excitation which can be
obtained by mobility analyzing.
Here, Yc means the mobility of non-conservative coupling, the transfer mobility between two

structures can be shown to be given by

y12 ¼
y1y2

Y1 þ Y2 þ Yc

: ð17Þ

Define the non-conservative coupling coefficient by

q ¼
y12ðconÞ

y12ðinconÞ
¼ 1þ

Yc

Y1 þ Y2
: ð18Þ

The transfer mobility between two structures is far less than driving mobility of structure for
most mechanic systems, so the computing of the total loss factor and vibration energy ratio can be
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simplified as

Z1s ¼
Z1

1�
1

q
�

y1

Y1 þ Y2

����
����
2
;

Z2s ¼
Z2

1�
1

q
�

y2

Y1 þ Y2

����
����
2
; ð19Þ

and

E
ð1Þ
21 ðinconÞ ¼

1

jqj2
E

ð1Þ
21 ðconÞ;

E
ð2Þ
12 ðinconÞ ¼

1

jqj2
E

ð2Þ
12 ðconÞ: ð20Þ

The non-conservative coupling coefficient is a bridge between the conservatively and non-
conservatively coupled systems. In disposing a conservatively coupled system by vibration
isolating or damping, non-conservatively coupled coefficient is introduced to describe the
influence of isolation or damping easily.
Experiment is carried out to validate the theory’s correction, the experimental system is made of

two steel plates connected with damper as shown as Fig. 10. Fig. 11 presents the experimental
results that show good consistency compared with theoretically predicted results.

5. Series coupled system

The development of SEA includes power flow research in coupled oscillators and SEA analysis
of continuous structures. Many research works had been performed about oscillators, from two
conservatively coupled oscillators to two non-conservatively coupled oscillators, from three series
conservatively coupled oscillators, to three series non-conservatively coupled oscillators, and
many important conclusions have been gained. But studies on power flow of structural coupled
systems are relatively few.
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For a three conservatively coupled structures system, making use of four ports network
approach, transfer mobilities are given by

y12 ¼ y21 ¼
y1y2ðY2 þ Y3 � y0

2Þ
ðY1 þ Y2ÞðY2 þ Y3Þ � y022

;

y23 ¼ y32 ¼
y2y3ðY1 þ Y2 � y0

2Þ
ðY1 þ Y2ÞðY2 þ Y3Þ � y022

;

y13 ¼ y31 ¼
y1y2y3

ðY1 þ Y2ÞðY2 þ Y3Þ � y022
: ð21Þ

The two boundaries of structure 2 are connected with structure 1 and structure 3, respectively.
y02 in Eqs. (21) is on behalf of transfer mobility between the two boundaries and y2 represents the
average transfer mobility of structure 2.
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The indirect coupling coefficient is introduced here to relate two substructures system and
complicated coupled system. Define indirect coupling coefficient by

t12223 ¼
y0
2

y2
: ð22Þ

Since transfer mobility is far less than driving mobility, taking the advantage of indirectly
coupling coefficient, the relationship of the vibration energy ratio between the series coupled
system and the simplest two substructures system is expressed as

E
ð1Þ
31 ¼ E

ð1Þ
21 ðtwoÞ � E

ð2Þ
32 ðtwoÞ � jt12223j2: ð23Þ

Similarly, for two arbitrary structures in a N-substructure series coupled system, vibration
energy ratio of them can be written as

E
ðiÞ
mið?� i � j � k � l �?Þ ¼ E

ðiÞ
ji ði � jÞ � E

ðjÞ
kj ðj � kÞ � E

ðkÞ
lk ðk � lÞ � jti�j�kj2 � jtj�k�l j2: ð24Þ

One finds that it is easier to acquire the vibration energy ratio under single excitation in terms of
indirectly coupling coefficient and vibration energy ratio is vital in computing the primary
parameters of SEA.
Performing the experiment as in Fig. 12 to verify the theory, two steel plates were coupled

through a steel beam. Result is shown in Fig. 13. Theoretical computing results of vibration
energy ratio of two indirect coupled structures are compared with experiment results. The
outcome shows that theoretical prediction and experimental measure are accordant except for a
little error, and furthermore the analysis testifies that it is caused by beam’s shape error.
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6. Complicated coupled system

Here one goes into line joint, non-conservatively coupled and multi-structures series systems
gradually. Based on these changes, complex coupled system is dealt with. Namely, it combines
characteristics of line joint, non-conservatively coupled, and in series or parallel connection. For
all know that a system always consist of many structures and there are all kinds of connection
styles in real world beside in simple series. Sometimes it is complicated like a net. The key point is
to simplify the system convenient but keeping certain precision. By this token, the authors
bring forward a gradation analysis model of complicated coupled system to meet this need. See
Fig. 14.
In gradation analysis model, the structure directly excited by external force is called the source

since it is the vibration source of all the other structures in this system. Those structures, whether
connected with each other or not, its connected with source is named structure in the first layer.
Structure in the second layer is connected with source indirectly by the medium of structures in the
first layer. They can be joint to each other or joint to multi-structures in the first layer at the same
time. Same as structure in the third layer, the fourth layer, and so on. Stated differently,
complicated coupled system like a net, where structures are nodes and the connections of
structures are lines of the net, is formed. Lifting one node, just like the source of gradation
analysis model, the layers below clearly appear.
Energy balance equation of complicated coupled system gives

Pi ¼ o Z0i þ
XN

j¼1
jai

Z0ij

0
BB@

1
CCAEi � o

XN

j¼1
jai

ðZ0jiEjÞ: ð25Þ

Before analyzing the vibration of a system composed by N substructures, one must ascertain N

equivalent internal loss factors and N 	 ðN � 1Þ coupled loss factors. Coupling loss factor of two
arbitrary structures is acquired by means of the equation

XN

j¼1
jak

f½EðiÞ
jk � E

ðkÞ
jk � � Z0jkg ¼ Zks ð26Þ
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while equivalent internal loss factor is computed by the equation

Z0i þ
XN

j¼1
jai

Z0ij ¼ Zks þ
XN

j¼1
jak

½EðkÞ
jk Z0jk�: ð27Þ

In this paper, the subject is universal. Thus the conclusion has wide applicability so as assuming
that transfer mobility is far less than driving mobility.

7. Vibrations and noise prediction of vehicle

Most of the noise radiation of vehicle is from structural vibration. Here, the property
of the vibration and noise radiation of an vehicle is analyzed by the developed SEA and
compared with experimental results. The SEA model of the vehicle is shown as Fig. 15. Fig. 16
gives the vibration transfer loss of the vehicle under working condition by both theoretical
prediction and experimental measure, and the result predicted by conservative SEA and the
developed SEA are both shown in the figure. The result shows more preferable accordance
between the developed SEAs compared to conservative SEA with measured data. In Fig. 17, the
noise radiation predicted by the developed SEA is compared with experiment results.
Additionally, in Figs. 16 and 17, the results show in the way of relative vibration transmission
and sound pressure level.
More analysis indicates that two very effective ways can be used to reduce the noise radiation of

the vehicle. The best way is to cut down the vibration energy transmission from the engines to the
shells, and vibration isolation can be taken in practical work. The other way is to reduce the
vibration levels of the engines, shells outside and near the engines by damping disposal. Through
gradation analysis, it is also found that little effect may be induced by damping with shells far
away from the engines.

8. Conclusion

The main contributions of studies stated in this paper are

1. A bridge between the complex coupled structures system with the two conservatively coupled
structures system is built up by introducing three coefficients. Linking style coefficient is
introduced to denote the rule of vibration energy transfer when structures are linked at one
point, some points or a line. Non-conservative coupling coefficient is introduced to describe
the influence of isolation or damping when structures are isolated or damped. Indirect
coupling coefficient is introduced to research the property of vibration energy transfer when
two structures are indirectly linked by other structure.

2. An approach of gradation analysis is put forward to simplify the vibration analysis of
complicated coupled system. By this approach, a complex system may be simplified
conveniently. Accordingly, the energy balance equation of the complicated coupled system is
given.
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Fig. 15. SEA model of the vehicle structure 1: the shell of motor; structure 2–10: the shells from tail to head of the

vechile; structure 11 and 12: plates; 13–20: the sound spaces in structures 2–10; 21: the sound space outside vechile; 22:

axis.
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Fig. 16. Vibration transfer loss of vehicle (—) measured, (–�–) predicted by conservative SEA, (– –) predicted by
advanced SEA.
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3. The vibration and noise radiation from an underwater vehicle is analyzed by the developed
SEA, and the proper way to reduce noise radiation of the vehicle is pointed out. It is found
that the best way to deduce the noise of the vehicle is isolating shells from engines, and
damping shells outside and near the engines is also a good way.
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Appendix A. Nomenclature

c damping coefficient
Ei energy
E

ðÞ
ij energy ratio

f frequency
G average driving point mobility
K stiffness
L length
M mass
m mass
N modal number
n modal density
P power flow
p linking style coefficient
q non-conservatively coupling coefficient
t indirect coupling coefficient
Y driving mobility
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y transfer mobility
Z loss factor
l wavelength
o ¼ 2rf

References

[1] L.C. Chow, R.J. Pinnington, On the prediction of loss factors due to squeeze-film damping mechanisms, ISVR

Technical Report, University of Southampton, UK, 1985.

[2] Z.H. Sun, J.C. Sun, C. Wang, Analysis of the cause for negative loss factor formation, Acta Acustica 21 (5) (1996)

798–804.

[3] M. Beshara, A.J. Keane, Statistical energy analysis of multiple, non-conservatively coupled systems, Journal of

Sound and Vibration 198 (1) (1996) 95–122.

[4] M.P. Sheng, M.Q. Wang, J.C. Sun, Effective internal loss factors and coupling loss factors for non-conservatively

coupled systems, Journal of Sound and Vibration 209 (4) (1998) 685–694.

[5] R.H. Lyon, Machinery Noise and Diagnostics, Butterworths, London, 1987.

[6] J.C. Sun, M.Q. Wang, M.P. Sheng, New development of statistical energy analysis, Natural Science Development (in

China) 8 (2) (1998) 129–136 (in Chinese).

ARTICLE IN PRESS

M.P. Sheng et al. / Journal of Sound and Vibration 274 (2004) 877–891 891


	Statistical energy analysis for complicated coupled system and its application in engineering
	Definitions of SEA parameters
	Equivalent internal loss factor of non-conservatively coupled oscillators
	Point-like and line-like joint systems
	Non-conservatively coupled system
	Series coupled system
	Complicated coupled system
	Vibrations and noise prediction of vehicle
	Conclusion
	Acknowledgements
	Nomenclature
	References


